

Universidade Federal Rural de Pernambuco-UFRPE Departamento de Matemática - DM

Prof. Marcelo Pedro

Lista 04 - Introdução as Equações Diferenciais Ordinárias-2018.1

Técnicas de substituição

Questão 1 Equação de Bernoulli

A equação

$$y' + p(t)y = q(t)y^n, \quad n \in \mathbb{R}$$

é conhecida como Equação de Bernoulli e é linear se n = 0 ou n = 1. Se $n \neq 0$ ou $n \neq 1$ a equação não é linear mas pode ser tranformada em uma equação linear fazendo a mudança de variável $v = y^{1-n}$. Esse método de solução foi encontrado por Leibniz em 1696. Demonstre isto e resolva as equações:

1.
$$t^2y' + 2ty - y^3 = 0$$
, $t > 0$

4.
$$y' - \frac{3}{4}y = t^4y^{\frac{1}{3}}$$

2.
$$y' = ry - ky^2$$
, $r > 0, k > 0$.

3.
$$y' + t^2y = t^2y^4$$

5.
$$y' + \frac{2}{t}y = -t^9y^5$$
, $y(-1) = 2$.

Questão 2 Equação de Riccati p 102. A equação

$$\frac{dy}{dt} = q_1(t) + q_2(t)y + q_3(t)y^3$$

é conhecida como equação de Riccati¹ Suponha que é conhecida alguma solução particular y₁ desta equação. Uma solução mais geral contendo uma constante arbitrária pode ser obtida pela substituição

$$y(t) = y_1(t) + \frac{1}{v(t)}.$$

Mostre que v(t) satisfaz a equação linear de primeira ordem

$$\frac{dv}{dt} = -(q_2 + 2q_3y_1)v - q_3.$$

Note que v(t) vai conter uma única constante arbitrária.

Questão 3 Usando o método do exercício anterior e a solução particular dada, resolva cada uma das equações de Riccati a seguir:

¹Em homenagem a Jacopo Francesco Riccati(1676-1754). Riccati estudou estensivamente essas equações; no entanto, o resultado enunciado neste problema foi descoberto por Euler(em 1760).

1.
$$y' = 1 + t^2 - 2ty + y^2$$
; $y_1(t) = t$ 3. $\frac{dy}{dt} = \frac{2\cos^2(t) - \sec^2(t) + y^2}{2\cos(t)}$; $y_1(t) = \sin(t)$.
2. $y' = -\frac{1}{t^2} - \frac{y}{t} + y^2$; $y_1(t) = \frac{1}{t}$

Questão 4 A propagação de uma unica ação em uma população muito grande(por exemplo, motoristas ligando os faróis ao pôr do sol) muitas vezes depende parcialmente de circunstâncias externas(o escurecer) e parcialmente de uma tendência de imitar os outros que já executaram a ação em questão. Neste caso, a proporção y(t) de pessoas que já executaram a ação pode ser descrita² pela equação

$$\frac{dy}{dt} = (1 - y)[x(t) + by],\tag{0.1}$$

onde x(t) mede o estimulo externo e b é o coeficiente de imitação.

- a) Note que a equação 0.1 é uma equação de Riccati e que $y_1(t) = 1$ é uma solução. Use a transformação sugerida para equações de Riccati e encontre a equação linear satisfeita por v(t).
- b) Encontre v(t) no caso em que x(t) = at, onde a é constante. Deixe sua resposta em forma integral.

Questão 5 Resolva as seguintes EDO's usando técnicas de substituição

1.
$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$$

2. $\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$

3. $\frac{dy}{dx} = \frac{4y - 3x}{2x - y}$

4. $\frac{dy}{dx} = \frac{4y + 3x}{2x + y}$

5. $\frac{dy}{dx} = \frac{4y + 3x}{2x + y}$

6. $(x^2 + 3xy + y^2)dx - x^2dy = 0$

7. $\frac{dy}{dx} = \frac{x^2 - 3y^2}{2xy}$

8. $\frac{dy}{dx} = \frac{3y^2 - x^2}{2xy}$

9. $\frac{dy}{dx} = (2x + 3y)^2$

10. $\frac{dy}{dx} = (-x + y + 15)^3$

Algumas equações de segunda ordem

Lembre que uma equação diferencial ordinária de segunda ordem em geral pode ser escrita como:

$$y'' = f(t, y, y').$$

Vamos ver dois casos particulares onde um método de substituição permite resolver estas equações.

Questão 6 Equações sem a Variável Dependente Para uma equação diferencial de segunda ordem da forma y'' = f(t, y'), a substituição v = y' implica que v' = y'' e então a equação é transformada em v' = f(t, v). Quando esta equação recai em um método conhecido resolvemos ela e então descobrimos y integrando v. Em cada um das equações abaixo, use este método para encontrar a solução:

²Veja Anatol Rapoport, "Contribution of the Mathematical Theory of Mass Behavior:I. The Propagation of Single Acts" Bulletin Of Mathematical Biophysics 14(1952)159-169 e John Z. Hearon, "Note on the Theory Of Mass Behavior" Bulletin Of Mathematical Biophysics 17(1955)7-13

a)
$$t^2y'' + 2ty' - 1 = 0$$
, $t > 0$

d)
$$ty'' + y' = 1$$
, $t > 0$

b)
$$y'' + t(y')^2 = 0$$

e)
$$2t^2y'' + (y')^3 = 2t'y', \quad t > 0$$

c)
$$y'' + y' = e^{-t}$$

f)
$$t^2y'' = (y')^2$$
, $t > 0$

Questão 7 Equações sem a Variável Independente Para uma equação diferencial de segunda ordem da forma y'' = f(y, y') na qual não aparece a variável independente, a substituição v = y' implica que v'=y'' e então a equação é transformada em v'=f(y,v), ou mais explicitamente

$$\frac{dv}{dt} = f(y, v).$$

Esta fórmula envolve três variavéis, para eliminar uma delas lembramos que a regra da cadeia implica que:

$$v' = \frac{dv}{dt} = \frac{dv}{dy} \cdot \frac{dy}{dt} = \frac{dv}{dy} \cdot v.$$

Transformando a equação em $\frac{dv}{dy}v=f(y,v)$. Então se está ultima equação for de um dos tipos que conhecemos a solução, resolvemos e obtemos v como uma função de y. Em seguida resolvemos $\frac{dy}{dt} = v(y)$ que é uma equação separável. Em cada um das equações abaixo, use este método para encontrar a solução:

a)
$$yy'' + (y')^2 = 0$$

$$d) y'' + y = 0$$

b)
$$y'' + y(y')^3 = 0$$

e)
$$2y^2y'' + 2y(y')^2 = 1$$

c)
$$yy'' - (y')^3 = 0$$

$$f) y'' + (y')^2 = 2e^{-y}$$

Questão 8 Em cada um dos problemas abaixo, resolva o problema de valor inicial dado usando os métodos dos dois exercicios anteriores.

a)
$$yy'' = 2$$
, $y(0) = 1$, $y'(0) = 2$.

b)
$$y'' - 3y^2 = 0$$
, $y(0) = 2$, $y'(0) = 4$.

c)
$$(1+t^2)y'' + 2ty' + 3t^{-2} = 0$$
, $y(1) = 2$, $y'(1) = -1$.

d)
$$y'y'' - t = 0$$
 $y(1) = 2$, $y'(1) = 1$.

Questão 9 Teoremas de Existência sem resolver a EDO, usando os teoremas de existência diga um intervalo onde a solução da EDO certamente existe.

1.
$$(t-3)y' + (\ln(t))y = 2t$$
, $y(1) = 2$.

$$y(1) = 2$$

4.
$$(4-t^2)y' + 2ty = 3t^2$$
, $y(1) = -3$.

$$y(1) = -3.$$

2.
$$t(t-4)y' + y = 0,$$
 $y(2) = 1.$

$$y(2) = 1$$

5.
$$(4-t^2)y' + 2ty = 3t^2$$
, $y(-1) = 1$.

$$y(-1) = 1.$$

3.
$$y' + (tg(t))y = sen(t),$$
 $y(\pi) = 0.$

$$y(\pi) = 0.$$

$$6. (\ln(t))y' + y = \cot(t),$$

$$y(2) = 3.$$

Questão 10 Dependência das condições iniciais

Em cada um dos problemas abaixo resolva o problema de valor inicial dado e determine como o intervalo no qual a solução existe depende do valor inicial y_0 .

1.
$$y' = \frac{-4t}{y}$$
 $y(0) = y_0$. 3. $y' = 2ty^2$, $y(0) = y_0$.

2.
$$y' + y^3 = 0$$
, $y(0) = y_0$. 4. $y' = \frac{t^2}{y(1+t^3)}$ $y(0) = y_0$.

"("(...) nunca nos tornaremos Matemáticos, por exemplo, embora nossa memória possua todas as demonstrações feitas por outros, se o nosso espírito não for capaz de resolver toda espécie de problemas; (...) "RENÉ DESCARTES (Regras Para Orientação do Espírito. "([1], pág. 12)

Referências

- [1] DESCARTES, R. Regras para a Orientação do Espiríto. Tradução de Maria Ermantina de Almeida Prado Galvão. Editora WMF Martins Fontes. Terceira edição, São Paulo. 2012. 151p.
- [2] STEWART, James. Cálculo. Volume 2. Tradução de Antonio Carlos Morretti; Antonio Carlos Gilli Martins. Editora Cengage Learning, São Paulo, 2009.
- [3] BOYCE, William E; DIPRIMA, Richard C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. Nona edição. Rio de Janeiro: LTC, 2012.